
TRANSIT: Specifying Protocols with Concolic Snippets ∗

Abhishek Udupa Arun Raghavan Jyotirmoy V. Deshmukh†

Sela Mador-Haim Milo M. K. Martin Rajeev Alur
University of Pennsylvania

{audupa, arraghav, djy, selama, milom, alur}@cis.upenn.edu

Abstract
With the maturing of technology for model checking and con-
straint solving, there is an emerging opportunity to develop pro-
gramming tools that can transform the way systems are specified.
In this paper, we propose a new way to program distributed pro-
tocols using concolic snippets. Concolic snippets are sample exe-
cution fragments that contain both concrete and symbolic values.
The proposed approach allows the programmer to describe the de-
sired system partially using the traditional model of communicat-
ing extended finite-state-machines (EFSM), along with high-level
invariants and concrete execution fragments. Our synthesis engine
completes an EFSM skeleton by inferring guards and updates from
the given fragments which is then automatically analyzed using a
model checker with respect to the desired invariants. The coun-
terexamples produced by the model checker can then be used by
the programmer to add new concrete execution fragments that de-
scribe the correct behavior in the specific scenario corresponding
to the counterexample.

We describe TRANSIT, a language and prototype implementa-
tion of the proposed specification methodology for distributed pro-
tocols. Experimental evaluations of TRANSIT to specify cache co-
herence protocols show that (1) the algorithm for expression infer-
ence from concolic snippets can synthesize expressions of size 15
involving typical operators over commonly occurring types, (2) for
a classical directory-based protocol, TRANSIT automatically gen-
erates, in a few seconds, a complete implementation from a spec-
ification consisting of the EFSM structure and a few concrete ex-
amples for every transition, and (3) a published partial description
of the SGI Origin cache coherence protocol maps directly to sym-
bolic examples and leads to a complete implementation in a few
iterations, with the programmer correcting counterexamples result-
ing from underspecified transitions by adding concrete examples in
each iteration.

Categories and Subject Descriptors D.1 [Programming Tech-
niques]: Automatic Programming; D.2.2 [Design Tools and Tech-
niques]: Computer-aided Software Engineering; D.2.4 [Software
Verification]: Model Checking

Keywords Program Synthesis; Distributed Protocol Synthesis;
Cache Coherence Protocols; Programming by Example.
∗ This research was partially supported by NSF award CCF 0905464 and
NSF Expeditions in Computing grant CCF 1138996.
† Jyotirmoy V. Deshmukh is currently a researcher at Toyota Technical
Center, Gardena, CA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $15.00

1. Introduction
Over the last few decades, technology for program analysis, model
checking, and software verification has matured, and has witnessed
growing adoption in industry. However, verification tools have
largely been confined to discovering bugs in systems that have
already been designed. This raises the question: how can we lever-
age the advances in analysis tools to assist programmers, during
the program development phase, in an interactive manner? In this
paper, we propose a methodology for programming distributed
protocols, in which a programmer can express the intended design
using multiple formats, which a synthesis tool then integrates into
an executable implementation. Our approach is inspired by recent
work on sketching and on programming by examples. In sketching,
a programmer writes a partial program with incomplete details,
and a synthesizer then fills in the missing details based on user-
specified assertions [23, 24] (see also [15, 26]). With this approach,
the programmer can continue to use the familiar imperative style of
programming, but can use the synthesis tool to find intricate details
necessary for fine-tuning code by supplying a few high-level in-
variants. In programming by examples, the programmer expresses
the desired behavior using a set of example input/output traces,
and the synthesis tool constructs an executable implementation
consistent with these examples. This has been shown to be an intu-
itive and effective style for programming finite-state reactive con-
trollers [9–11], Excel macros performing string manipulations [7],
and pointer-manipulations for updating data structures [22].

This paper focuses on programming reactive systems such as
distributed protocols. For such protocols, although the core algo-
rithms are published with accompanying correctness proofs and
performance analyses, these descriptions typically do not specify
every detail, and translating them into a correct working imple-
mentation is challenging due to corner cases arising from asyn-
chrony and concurrency [2]. A distributed protocol is typically de-
scribed by listing the set of processes participating in the protocol,
the set of channels connecting the processes, the types of messages
each channel can carry, and the descriptions of individual processes
given as extended finite-state-machines (EFSMs). An EFSM descrip-
tion consists of a list of internal state variables, a set of control
states, and a set of transitions connecting control states. Each tran-
sition is specified by a guard condition and update code that refer
to the internal state variables and fields of incoming and outgoing
messages. This style of specifying distributed protocols is common
in standardized descriptions of network protocols as RFCs, rigor-
ous textbook descriptions of distributed algorithms [17], modeling
languages supported by formal verification tools such as SPIN [12]
and Murϕ [5], and domain-specific languages such as SLICC [18].
The traditional programming style requires the programmer to fill
in every detail of every transition, and our goal is to offer program-
mer assistance with this tedious and error-prone task.

Using the proposed language, TRANSIT, a programmer de-
scribes the communication architecture of a distributed protocol

1

Figure 1. Design methodology using concolic snippets

by listing the set of processes, the set of channels connecting them,
the types of messages each channel can carry, and the EFSM skele-
ton for each process by listing control states and internal state
variables. TRANSIT also allows behavioral specification of each
process using concolic snippets, which are fragments of desired
execution that contain conditional updates to variables using both
concrete and symbolic values (the term “concolic” was coined in
the context of testing programs using both concrete and symbolic
inputs [20]). This approach offers the programmer the flexibility to
either describe each EFSM transition in the traditional way using
symbolic expressions for guards and updates, or to specify only
representative examples of such transitions. The TRANSIT synthe-
sis tool then generates a complete protocol by inferring guards and
update actions that are consistent with the specified snippets. The
programmer also specifies high-level temporal invariants which
the protocol needs to satisfy. A finite instance of the synthesized
protocol is then checked against these invariants using a model
checker. The programmer debugs any reported counterexamples
with a visualizer and adds more snippets to rule out erroneous be-
haviors. Figure 1 illustrates the proposed methodology.

The main computational problem in our approach is to infer
an expression to be used in a guard or an update appearing in an
EFSM transition that is (1) built in a type-consistent manner us-
ing the specified vocabulary of function symbols and variables, and
(2) is consistent with the given set of concrete and symbolic ex-
amples. Our solution is a variant of the counterexample-guided in-
ductive synthesis (CEGIS) approach [8, 13, 23], and involves an
interplay between pruning based on concrete examples and con-
cretization of symbolic examples using an SMT solver. Specif-
ically, our implementation enumerates expressions of increasing
sizes, where the space of expressions is pruned significantly by
considering two expressions equivalent if they evaluate to the same
values for the given concrete examples. This results in an expres-
sion that is consistent with all the concrete examples. This expres-
sion is then checked for consistency with respect to the symbolic
examples using an SMT solver. If the consistency check succeeds,
then the expression is the desired answer. If it fails, the evidence
for inconsistency returned by the solver contributes to a concrete
example, which is considered in subsequent iterations.

The TRANSIT prototype implementation invokes the SMT
solver Z3 [19] and the model checker Murϕ [5]. To evaluate the
algorithm for inferring an expression from concolic examples, we
consider a vocabulary of the common operations on Booleans, in-
tegers, and bounded sets. The algorithm can infer expressions with
a size of 15 symbols within a few minutes.

To evaluate the feasibility of the proposed methodology, we fo-
cus on cache coherence protocols, a class representative of dis-
tributed protocols. We performed two case studies where students
with no experience with coherence protocols used the TRANSIT
prototype to program two canonical cache coherence protocols

from textbook descriptions using concolic examples [25]. Both
case studies resulted in generating protocols that were successfully
checked by the model checker. We found that: (1) the final, cor-
rectly generated protocol typically required one or two concrete
snippets per transition, (2) synthesizing the protocol from snippets
took only a few seconds, and (3) the entire iterative protocol devel-
opment required a few hours of manual effort for either case study.

In our final case study, we used TRANSIT to specify the indus-
trial-strength SGI Origin protocol. The published description [16]
was directly mapped to symbolic snippets corresponding to typical
transitions. However, as the published prose is not a complete spec-
ification, it results in an implementation that violates coherence in-
variants during the model-checking phase. Because the counterex-
amples produced by the model checker correspond to concrete exe-
cutions, our methodology allowed the programmer to augment the
original description with concrete fixes to these violating traces,
culminating in a correct implementation of the protocol.

2. Illustrative Examples of Our Approach
We illustrate the use of TRANSIT using cache coherence proto-
cols as an example application. Such protocols maintain a coherent
view of shared memory among threads running in multi-core and
multi-socket systems. Although programmers view memory as a
single data store, most systems incorporate private per-core caches
to reduce access latency. Coherence protocols prevent threads from
reading stale data from caches by ensuring that reads to memory
locations (addresses) receive the last value written to that location
by any thread. Coherence is conventionally enforced using mutu-
ally exclusive read/write permissions: either multiple processors
may simultaneously cache an address with read permissions (i.e.,
shared readers) or a single processor may cache that address with
read/write permissions (i.e., exclusive writer). Although several dif-
ferent hardware and software approaches exist, this paper focuses
on invalidation-based directory hardware implementations. In such
a system, processors issue requests to a central directory which
tracks the current permissions of each cache. On receiving a request
for write permission, the directory issues invalidation messages to
all caches that hold a valid copy (read or write permissions) and
gathers acknowledgments from these caches before granting write
permissions to the requester. Similarly, the directory redirects read
requests to the last writer to that address (tracked as the “owner” in
the directory) to ensure that valid data is transferred to the request-
ing processor.

As with existing approaches for modeling protocols using state
machines, TRANSIT views the protocol in terms of a well defined
structure (referred to as the protocol skeleton) and its behavioral
description.

Protocol skeleton. A protocol description usually includes the
high-level structural description of the desired protocol. For ex-
ample, from Chapter 8 of the coherence primer [25], the specifi-
cation would include: (1) Processes: a distinguished EFSM called
the Directory and one EFSM per cache controller. (2) Communica-
tion architecture: three networks that the EFSMs use to send/receive
messages, including any ordering guarantees. (3) Message types:
such as Get and Data that may be carried on specific networks (for
instance, the Response network can only carry Data and Inv-Ack
message types). (4) Control states of each EFSM: such as M, S and
I for the directory EFSM. (5) Internal variables for each EFSM: such
as Sharers in directory, which is used to track the list of cache
processes with a valid copy of data. The above protocol skeleton
is usually expressed as type declarations and variable definitions in
existing approaches. The programmer specifies the protocol skele-
ton similarly in the proposed approach as well.

2

Traditional behavioral description. Having set up the above
structure, a protocol implementation next requires the behavioral
specification of the EFSMs. Protocol designers typically describe
behavior in terms of example flows [27] or interaction of processes
when they exchange messages, triggering events and consequent
actions. These descriptions are commonly expressed and commu-
nicated informally (using visual aids like example state diagrams
and message sequence charts, or listing case-by-case actions tex-
tually) both in industrial protocols as well as in academic litera-
ture [16, 25]. Such informal descriptions can completely specify
relatively straightforward protocols like the textbook MSI exam-
ple [25]. In these cases, the programming task is largely to infer
and symbolically codify the semantics implied by the examples.
For more complex protocols, the informal descriptions convey
salient features, like common-case behavior and perhaps some of
the more interesting scenarios that might arise (usually in terms
of rules). Implementing such protocols involves the additional step
of filling in any unspecified details. However, it has been shown
that this approach to implementing complete protocols symboli-
cally as a program can be error-prone even for experts, with bugs
manifesting even in released processors [1, 2].
Specifying behavior with snippets. We observe that the complex-
ity in protocols does not usually stem from the code for individual
transitions — these tend to be straight line code. The complexity
is due to corner cases and race conditions arising from concur-
rency and asynchrony when protocols are considered in their en-
tirety [2]. Using a concolic approach allows the programmer to mix
symbolic snippets (transition code) describing well-defined behav-
ior (like rules or state machine transitions) with concrete snippets
describing specific example scenarios.

The TRANSIT tool composes the given concrete and symbolic
snippets to generate an implementation which allows at least all the
behaviors described in the input snippets. This implementation is
then model checked for coherence invariants. Any underspecifica-
tion or error in the specification of the EFSM behavior will result in
a counterexample during model checking, which the programmer
can then fix using concrete snippets to prevent subsequent occur-
rences of at least that specific violation.
Example using concolic snippets. We illustrate this mixed (or
concolic) use of TRANSIT with an anecdote from our case study
in implementing the SGI Origin protocol from published informal
textual rules [16] (Section 6 contains more details on this case
study, and using TRANSIT with concolic snippets to implement
protocols which are completely specified). The protocol skeleton
states that the directory EFSM has variables Sharers and Owner to
maintain its internal state. One of the rules in the paper describes
the behavior of a directory upon a read request from a cache as:
“If directory state is Exclusive with another owner, transitions to
Busy-shared with requester as owner and send out an intervention
shared request to the previous owner and a speculative reply to the
requester. Go to 5b”. Note that this description does not specify
how the Sharers process variable in the directory EFSM needs
to be updated. The programmer indicated that if the sender of the
message was not the previous Owner, the value of the Sharers
variable needs to contain at least the sender of the received message
in addition to the old value of the Sharers variable. Based on this
specification, TRANSIT generated the code:

Sharers := Sharers ∪ {Msg.Sender}
However, an attempt to verify the generated implementation using
Murϕ resulted in a coherence violation. TRANSIT provided a vi-
sual trace of the counterexample to the programmer, a simplified
version of which is shown in Figure 2. Observe that the transi-
tion on the directory shown in Figure 2 is a concrete instance of

Cache1 Cache2 Dir
State = EXCLUSIVE
Owner = Cache1
Sharers = {}

READ, Sender = Cache2

State = BUSY_SHARED
Owner = Cache2
Sharers = { Cache2 }

RepMsg
IntMsg

Figure 2. The counterexample trace

I

Busy

S

M

Busy
Data

Req
?(i,

Get
M)/

Rsp
!Dat

aMs
g(d)

Unb?(i, UnblockM)/

Sharers
=
{j}

Figure 3. EFSM representing a directory process. The M (mod-
ified) state indicates read/write permissions. The S (shared) state
indicates read-only permissions and the I (invalid) state indicates
no permissions. The rest of the states are transient states.

the scenario described earlier, where Msg.Sender is Cache2 and
the Owner variable is initially set to Cache1. Upon inspecting the
trace, the programmer recognized that in this particular scenario,
with Sharers needed to include the previous value of the Owner
as well. After a concrete snippet specifying this specific conditional
update was added, TRANSIT then generated a new implementation
including the correct update to Sharers as:

Sharers := Sharers ∪ {Msg.Sender, Owner}
This example illustrates how a programmer can benefit from us-

ing the concolic nature of TRANSIT. TRANSIT allows the program-
mer to combine the familiar symbolic programming style for spec-
ifying the protocol skeleton and well-understood behavior. TRAN-
SIT also makes it convenient to fix bugs with concrete execution
fragments that describe the desired outcome in the particular sce-
nario where the bug manifests.

3. Protocol Specification using Concolic Snippets
A protocol implementation results in transition code for commu-
nicating EFSMs. Figure 3 shows the EFSM for a directory process
in a cache coherence protocol. TRANSIT borrows from traditional
software [18] and hardware [4] protocol description languages to
specify the protocol skeleton (i.e., types and variable definitions)
and transitions (using a guarded command language). However,
TRANSIT offers the additional ability to mix concrete and symbolic
transitions as snippets, and to under-specify elements of transitions
for the tool to infer. We now describe how to specify a protocol
using TRANSIT.

3.1 High-level Building Blocks of TRANSIT

Coherence protocols typically assume an asynchronous, message-
passing based model of communication. Each process description
includes a list of input channels to receive messages, and output
channels on which messages are sent. A channel can be modeled as
a multiset or a queue depending on the desired ordering guarantees.

3

Transition(CurrentState, InputEvent)
[optional guard] => (NextState, OutMsg1, ...)

Pre1 ==>
Post11;
Post12;
. . .

Pre2 ==>
. . .

Figure 4. A concolic snippet. CurrentState and NextState are the
start and end control states. The snippet specifies zero or more out-
bound messages. It also specifies a guard-action block for each
guard containing a set of conditional updates. The expression Prei
specifies the condition (on process variables and the fields of the re-
ceived message) under which the boolean constraints Postij hold.
Each Postij constrains the updated value of exactly one process
variable or output message field in terms of the old values of the
process variables and the fields of the received message.

The syntactic elements of TRANSIT, shown in Figure 4, are as
follows:

Control states define the logical state of the directory and cache
machines. These can be thought of as the program counter for these
machines.

Process variables internal to each machine, such as Sharers in
the directory. These may be Booleans, integers or bounded sets.

Input events correspond to receiving messages or external trig-
gers (to issue requests). An input event is specified as a single mes-
sage variable and the network on which it is received.

Guards are Boolean expressions over process variables and
fields of received messages.

Output events correspond to sending messages to other pro-
cesses. They are represented as a list of message variables and the
name of network on which each message is sent.

Action statements update process variables to new values and
specify values for the fields of outbound messages.

We defer a discussion on Pre and Post to Section 3.2. A com-
plete specification of the behavior of an EFSM is thus a set of ac-
tions A that are to be executed, a set of output events O that are
to be generated, the next control state s′ to transition to, all predi-
cated on a guard g, for each combination of input event and control
state 〈e, s〉. The semantics of such a specification are that the EFSM
executes actions A, generates events O, and finally transitions to
control state s′ in response to an input event e when the EFSM is in
control state s, provided g evaluates to true. In the asynchronous
model of computation, the order in which processes execute is non-
deterministic. However, once a process has been chosen for execu-
tion, its actions are assumed to be deterministic.

3.2 Programming with TRANSIT

Figure 4 shows the composition of a single transition snippet in
TRANSIT. Using existing approaches such as SLICC [18] or hard-
ware description languages, the programmer would completely
specify the guards and actions in the transition. However, TRANSIT
allows for guards to be left empty and for actions to be specified as
constraints governed by pre- and post-conditions as shown in Fig-
ure 4. In such cases, the tool computes expressions for the empty
guards and update statements satisfying the given constraints.

The programmer has a choice of specifying completely sym-
bolic, completely concrete, or mixed concolic snippets. In each
case, TRANSIT generates a symbolic implementation. The pre- and
post-conditions are Boolean predicates over process variables and
message fields. Primed variables denote updated values of process
variables. We assume a parallel assignment model, which precludes
primed variables from appearing in pre-conditions and allows at
most one primed variable per post-condition. Note that although
guards and pre-conditions are both Boolean predicates ranging over

the same variables, they have markedly different uses: guards ap-
pear in the complete protocol implementation of the EFSM in a
guarded-command language, whereas pre-conditions are inputs to
the inference engine which allow users to capture particular scenar-
ios and are not part of the generated protocol implementation.
Symbolic snippets. By specifying the guard and actions symbol-
ically, we obtain a symbolic snippet which completely specifies a
transition. A non-empty guard is assumed to be symbolic (i.e., com-
pletely specified and not generated by TRANSIT). Symbolic actions
are specified by making the post-condition an equality constraint.
Concolic snippets. If the guard is left empty, or the actions are
specified using pre- and post-condition constraints (instead of
equality), the snippet is concolic in nature. The TRANSIT tool gen-
erates symbolic code for update statements and/or the guard to be
consistent with the given constraints. The following concolic snip-
pet specifies the transition for the directory process mentioned in
the SGI-Origin anecdote in Section 2.

Transition(EXCLUSIVE, ReqNet Msg) {
[] => (BUSY_SHARED, RepNet RMsg, IntNet IMsg) {

(Msg.MType = READ & Msg.Sender != Owner) ==> {
SubsetOf(SetUnion(Sharers, {Msg.Sender}),

Sharers’);
. . .

}}}

This snippet is applicable only when the current state is EXCLUSIVE
and a message is received on the network ReqNet. To be consistent
with the snippet, TRANSIT must generate code to update the new
value of Sharers to be a superset of the old value and the sender
of the incoming message.
Concrete snippets. Concolic snippets may contain symbolic pre-
and post-conditions over variables, but concrete snippets specify
concrete values for any variables in these constraints. They may
leave the guard empty as well. For example, the concrete snippet
below shows the bug-fix described in Section 2:

Transition(EXCLUSIVE, ReqNet Msg) {
[] => (BUSY_SHARED, RepNet RMsg, IntNet IMsg) {

(Msg.MType = READ & Owner = C1 &
Msg.Sender = C2) ==> {

Sharers’ = {C1, C2};
. . .

}}}

In summary, symbolic and concrete snippets can be thought of
as instances of concolic snippets in which guards and actions are
either completely specified (symbolic), or specified with concrete
values for all variables (concrete). The task of the TRANSIT tool
is to generate expressions for guards and update expressions for
variables such that they are consistent with the given snippets.
We formalize this problem in Section 5 after first describing our
expression inference algorithm in the next section.

4. Inferring Expressions
We first define the problem of inferring an expression from con-
crete or concolic examples in Section 4.1, which our synthesis pro-
cedure uses as a subroutine. Section 4.2 presents a solution for a
restricted version of this problem in which the examples involve
only concrete values, whereas Section 4.3 presents a solution for
the general case where the examples have concolic values.

The expression inference problem corresponds to the follow-
ing computational problem: given a quantifier-free formula C over
(typed) variables V and a distinguished (output) variable o, find
an expression e such that the formula C[o := e] is valid, where
C[o := e] is the usual notation for the formula obtained by syn-
tactically substituting e for every occurrence of o in C. Conceptu-

4

Function Description
add (Int, Int)→ Int Integer Addition
sub (Int, Int)→ Int Integer Subtraction
inc (Int)→ Int Add one to an Integer
dec (Int)→ Int Subtract one from an Integer
setadd (Set, PID)→ Set Add an entry into a Set
setsize (Set)→ Int Cardinality of a Set
setunion (Set, Set)→ Set Set Union
setinter (Set, Set)→ Set Set Intersection
setminus (Set, Set)→ Set Set Difference
setof (PID)→ Set Create a singleton Set
or (Bool, Bool)→ Bool Boolean Disjunction
and (Bool, Bool)→ Bool Boolean Conjunction
not (Bool)→ Bool Boolean Negation
setcontains (Set, PID)→ Bool Membership test on a Set
iszero (Int)→ Bool Test if an integer is Zero
∀t ∈ T equals (t, t)→ Bool Equality Test
ge (Int, Int)→ Bool Greater than or equal to
gt (Int, Int)→ Bool Greater than
∀t ∈ T , ite (Bool, t, t)→ t Conditional Expression
numcaches ()→ Int # of Caches (constant)

Table 1. Expression Vocabulary used in Coherence Protocols

ally, this problem is similar to solving ∃∀-formulas, and we use the
counterexample-guided inductive synthesis (CEGIS) strategy that
has previously been used to solve such problems [8, 23].

The algorithm enumerates expressions, with suitable pruning
strategies, to find a candidate expression e that is consistent with the
concrete examples that contribute to C. It then checks if ¬C[o := e]
is satisfiable. If ¬C[o := e] is unsatisfiable, then e is the desired
expression. Otherwise, the satisfying model contributes a concrete
example that is added to the set of concrete examples and the entire
process is repeated. Thus, the algorithm handles “exists an expres-
sion” using enumerative techniques and “is valid for all variable
values” using symbolic constraint solving.

4.1 Problem Definition
We define an expression vocabulary G as a tuple (T ,F), where T
is a set of types, and F is a set of typed function symbols, where
for each f ∈ F , arity(f) ∈ N denotes the arity of f , type(f) ∈ T
denotes the type of the range of f , and argtype(f, i) ∈ T , i ∈
[1, arity(f)] denotes the type of the domain of the ith argument
to f . Function symbols of arity zero are constants. F is finite, so
we have a fixed number of constant symbols. However, constant
expressions such as 2 are allowed as an abbreviation for add(1, 1).

Let V denote a set of typed variable symbols and let type(v) ∈
T denote the type of a variable v in V . Given an expression vocab-
ulary G = (T ,F) and a set of typed variables V , we denote the set
of expressions of type t as Exp(F ,V, t). This set is defined induc-
tively as follows: (1) If v ∈ V then v ∈ Exp(F ,V, type(v)), and
(2) If f ∈ F , and ∀i ∈ [1, k] : ei ∈ Exp(F ,V, argtype(f, i)), then
f(e1, e2, . . . , ek) ∈ Exp(F ,V, type(f)), where k = arity(f).

If e ∈ Exp(F ,V, t), then we write type(e) = t. We assume
that the Boolean type (denoted Bool) is always present in any in-
stantiation of T and that the basic Boolean operators (conjunction,
disjunction and negation) are part of F .

For specifying cache coherence protocols, we use an expression
vocabulary where the set of types is T = {Bool, Int, PID, Set}∪
Enums. Here, Int denotes the integer type, PID is a special type for
process identifiers, Set is a type denoting a set of values of type
PID, and Enums is a set of user defined enumerated types. The set
of functions F in the vocabulary is shown in Table 1.

The size of an expression e, size(e), is defined as the number of
function symbols and variable symbols appearing in e. Further, we

denote by Expk(F ,V, t) the set {e : e ∈ Exp(F ,V, t)∧ size(e) =
k}, i.e., the subset of expressions of type t with size k.

Given a set of typed variables V and a distinguished typed
variable o /∈ V (henceforth known as the output variable), an
example C is a Boolean formula of the form pre ⇒ post where
pre ∈ Exp(F ,V, Bool) and post ∈ Exp(F ,V ∪ {o}, Bool). In
other words, if the variables in V satisfy the pre-condition pre,
then the output variable o should be assigned an expression over
these variables such that the post-condition post holds. An example
set over the output variable o, denoted C(o), is defined as the set
of examples {C1, . . . , Cn} such that the conjunction

∧
n(prei ⇒

posti) is satisfiable. An expression e is consistent with the example
set C(o) iff for all C ∈ C(o), C[o := e] is a formula that is valid.
Example. Let V = {x, y}, where type(x) and type(y) are both
Int. Consider the example set {C1}, where C1 is ((x = 0)∧ (y =
1)) ⇒ (o = 1). The expressions y and x + y are all consistent
with C(o), while the expression x is inconsistent, as C1[o := x] is
the invalid formula (x = 0) ∧ (y = 1)⇒ (x = 1).

Now, consider the example set {C1, C2}, where C2 is the ex-
ample (x = 1) ∧ (y = 1) ⇒ (o = 2). The expression y is not
consistent with the new example set, as C2[o := y] is the invalid
formula (x = 1) ∧ (y = 1) ⇒ (y = 2); however, the expression
x+ y is still consistent.

The expression inference problem can now be stated as: given
an expression vocabulary G = (T ,F) with a set of variables V
and an example set C(o) over the typed output variable o, find an
expression e in Exp(F ,V, type(o)) which is consistent with C(o).

4.2 Inferring Expressions from Concrete Examples
We say that an example is concrete if it has the form: (

∧
v∈V(v =

kv))⇒ (o = ko), where for all v ∈ V , kv and ko are concrete ex-
pressions1 of types type(v) and type(o), respectively. An example
set containing only concrete examples is called a concrete example
set. An alternative representation for a concrete example is the tu-
ple (S, ko), where S is a valuation function mapping variables in
V to values and ko is the concrete value for the output variable o.
We use the notation S(e) to denote the evaluation of an expression
e for the valuation S for its constituent variables. Checking if an
expression e is consistent with a concrete example C is straight-
forward: we check if S(e) = ko. Given a concrete example set
ConcreteExs = {C1, . . . , Cn}, e is consistent with ConcreteExs
iff e is consistent with each Ci.

The algorithm enumerates expressions inductively until it finds
an expression e that is consistent with ConcreteExs. In the first
step, only expressions of size one are considered, i.e., variable sym-
bols or constants. In the nth step, expressions of size n are obtained
by composing expressions obtained in previous steps using func-
tions in F . As each expression e is enumerated, it is checked for
consistency with ConcreteExs.

To enhance scalability, the algorithm uses the examples to guide
the search as well, rather than just to check for consistency. Intu-
itively, if two expressions e and e′ evaluate to the same values for
each example C ∈ ConcreteExs, then only one of e or e′ needs to
be carried forward to the next iteration, as the information encoded
in ConcreteExs is insufficient to distinguish e and e′. The algorithm
exploits this property to prune the search space of expressions.

Let ConcreteExs = {C1, . . . , Cn} be a concrete example
set. Suppose each Ci is represented as (Si, ki). Then the sig-
nature Sig(e,ConcreteExs) of an expression e with respect to
ConcreteExs is a vector of values 〈k1, k2, . . . kn〉, where each
ki = Si(e). In other words, the signature of an expression e is the

1 These are constant-valued expressions that do not contain variables. For
example, if the only integer-valued constants in F are 0 and 1, then kv is
allowed to be the term 2 as an abbreviation for add(1, 1).

5

Algorithm 1: SolveConcrete
Input : A concrete example set ConcreteExs on a typed variable o,

an expression vocabulary (T ,F) and a set of typed
variables V .

Output: An expression e, which is consistent with ConcreteExs.
Data : The sets ExpSet(t, i), t ∈ T , i ∈ N, denoting sets of

expressions of type t and size i, initialized to empty sets. A
set SigSet which stores the signatures of all enumerated
expressions e over ConcreteExs, initially empty.

1 Goal← 〈k1, k2, . . . , kn〉, for each Ci = (Si, ki) ∈ ConcreteExs
2 SizeOneExps←⊥
3 foreach v ∈ V do
4 SizeOneExps← SizeOneExps ∪ {v}
5 foreach (c ∈ F) ∧ (arity(c) = 0) do
6 SizeOneExps← SizeOneExps ∪ {c}
7 foreach e ∈ SizeOneExps do
8 if Sig(e,ConcreteExs) /∈ SigSet then
9 SigSet← SigSet ∪ {Sig(e,ConcreteExs)}

10 if Sig(e,ConcreteExs) = Goal then
11 return e

12 ExpSet(type(e), 1)← ExpSet(type(e), 1) ∪ {e}

13 i← 2
14 while true do
15 foreach f ∈ F do
16 m← arity(f)
17 foreach partition p of i− 1 into m-partitions do
18 foreach (e1, e2, . . . , em) ∈∏m

j=1 ExpSet(argtype(f, j), pj) do
19 e← f(e1, e2, . . . , em)

20 if Sig(e,ConcreteExs) /∈ SigSet then
21 SigSet← SigSet∪{Sig(e,ConcreteExs)}
22 if Sig(e,ConcreteExs) = Goal then
23 return e

24 Add e to ExpSet(type(e), size(e))

25 i← i+ 1

vector of values obtained by evaluating e over the concrete exam-
ples. Two expressions e and e′ are said to be indistinguishable w.r.t
a concrete example set ConcreteExs iff Sig(e,ConcreteExs) =
Sig(e′,ConcreteExs).

Example. Consider the expression vocabulary shown in Table 1.
Suppose that we wish to describe the expression to compute the
maximum of two integers a and b. Consider concrete example
C1 = (S1, k1), where S1 is the map 〈a : 5, b : 3, c : 4〉. Also
consider the concrete example C2 = (〈a : 3, b : 1, c : 2〉, k2). Let
ConcreteExs = {C1, C2}. For expressions e1 = a+b, e2 = b+a,
e3 = c + c, the signatures Sig(e1,ConcreteExs) = 〈8, 4〉,
Sig(e2,ConcreteExs) = 〈8, 4〉, and Sig(e3,ConcreteExs) =
〈8, 4〉 are equal. Thus e1, e2, and e3 are indistinguishable with
respect to ConcreteExs. Note that this implies that larger expres-
sions such as a+(a+ b) and a+(c+ c) are also indistinguishable
w.r.t. ConcreteExs. �

Algorithm 1, referred to as SolveConcrete, implements the enu-
meration based strategy, with the pruning of the search space based
on the notion of indistinguishability, to find an expression that is
consistent with respect to a given set of concrete examples.

4.3 Inferring Expressions from Concolic Examples
We now describe an algorithm for the general problem defined
in Section 4.1, i.e., we relax the restriction that the examples be
concrete. Each example C ∈ ConcolicExs — where ConcolicExs

Algorithm 2: SolveConcolic
Input : A set of concolic examples ConcolicExs over a typed

output variable o, an expression vocabulary F and a set of
typed variables V .

Output: An expression e, which is consistent with ConcolicExs.
Data : ConcreteExs, a set of concrete examples inferred from

ConcolicExs.
1 ConcreteExs← {}
2 while true do
3 e←SolveConcrete (ConcreteExs, F , V)
4 if e is consistent with ConcolicExs then
5 return e

6 else
7 foreach C ∈ ConcolicExs such that ¬C[o := e] is

satisfiable do
8 S ← a valuation of variables v ∈ V which satisfies

the formula ¬C[o := e]

9 ko ← a value that satisfies the formula(∧
v∈V v = S(v)

)
∧ post(C[o := ko])

10 ConcreteExs← ConcreteExs ∪ (S, ko)

is a set of concolic examples — has the form pre ⇒ post, where
the structure of pre and post are unrestricted.

Evaluating a candidate expression e is sufficient to check if
e is consistent with respect to a given set of concrete examples.
However, checking consistency of an expression w.r.t. a concolic
example set requires a validity query involving terms from the
expression vocabulary. For our expression vocabulary we can use a
satisfiability modulo theories (SMT) solver to check consistency.

We now discuss how we can adapt Algorithm SolveConcrete to
infer expressions consistent with respect to a set of concolic exam-
ples. The notion of indistinguishability has been defined only with
respect to a set of concrete examples. It has no simple analogue
with respect to concolic examples. But using indistinguishability to
prune the search space contributes significantly to the scalability of
our enumerative approach, as our experiments show in Section 4.4.
Thus, it would be desirable to retain the benefits of using indistin-
guishability to prune the search space in the solution for the general
problem of inferring an expression consistent w.r.t. a set of concolic
examples. To this end, the algorithm which we now propose uses a
set of concretizations of the concolic examples to serve as concrete
examples w.r.t. which the search space is pruned.

Consider a concolic example set ConcolicExs over an output
variable o and an expression e found to be inconsistent with some
concolic example C of the form pre ⇒ post. Then there must
exist a valuation S over the variables v ∈ V which satisfies the
formula ¬C[o := e]. Now, pre must necessarily be satisfiable un-
der the valuation S. Let ko be a value which satisfies the formula(∧

v∈V v = S(v)
)
∧ post(C[o := ko]). The tuple (S, ko) is now a

concretization of the concolic example C. The proposed algorithm
thus maintains a concrete example set ConcreteExs containing
concretizations of concolic examples C ∈ ConcolicExs. By ensur-
ing that any expression e′ enumerated henceforth is consistent with
ConcreteExs before checking for consistency over ConcolicExs,
the number of expensive SMT queries needed can be reduced.
Whenever an expression e′ that is consistent with ConcreteExs, but
is inconsistent with ConcolicExs is found, additional concretiza-
tions of the concolic examples are added to ConcreteExs. This
technique helps in two ways: (1) the number of queries to an SMT
solver is reduced, and (2) the search space can be pruned on the
basis of indistinguishability.

Algorithm 2, referred to as SolveConcolic, makes use of these
pruning strategies. Note that it uses Algorithm SolveConcrete as a
subroutine. It maintains a set of concrete examples, ConcreteExs

6

Expression Counterexample Inferred Example

— — 〈a : 0, b : −1, o : 0〉
a 〈a : 0, b : 1, o : 0〉 〈a : 0, b : 1, o : 1〉
ite(iszero(dec(b)), b, a) 〈a : 0, b : 2, o : 0〉 〈a : 0, b : 2, o : 2〉
ite(gt(b, a), b, a) — —

Table 2. Illustration of the working of SolveConcrete

— which are concretizations of examples in ConcolicExs — and
invokes the SolveConcrete algorithm on it. If SolveConcrete finds
an expression e which is consistent w.r.t. ConcreteExs, the algo-
rithm checks if e is consistent w.r.t. ConcolicExs with a query to an
SMT solver. If e is inconsistent with ConcolicExs, then the algo-
rithm augments ConcreteExs with new concrete examples as de-
scribed earlier and repeats the entire process.
Example. To illustrate the working of the algorithm, consider find-
ing an expression for max(a, b), with the expression vocabulary in
Table 1. We can specify max(a, b) with the concolic example:

true⇒ (o ≥ a) ∧ (o ≥ b) ∧ ((o = a) ∨ (o = b))

Table 2 shows the expressions that were checked for consistency,
the witness for the inconsistency of the expression obtained, and
the concrete example inferred from the witness. The first row of
the table seeds the set of concrete examples. The subsequent rows
indicate the expression queried for symbolic validity and the con-
crete example inferred. We observe that the expression correspond-
ing to max(a, b) was discovered after making only four calls to the
SMT solver, although the algorithm enumerated approximately five
hundred expressions. �

4.4 Evaluation of the Expression Inference Algorithm
To evaluate the utility of the expression inference algorithm, we fo-
cus on the size of the expressions which the algorithm is able to
compute successfully as a key metric. To benchmark the perfor-
mance of the algorithm SolveConcrete, a large number of ran-
dom expressions of varying sizes were generated. For each expres-
sion, a set of ten concrete examples that were consistent with the
expression was generated. For each such concrete example set, the
Algorithm SolveConcrete was used to compute an expression that
is consistent. Figure 5 shows that the “Pruned” variant — which
prunes the search space using the notion of indistinguishability —
often explores two to three orders of magnitude fewer expressions
than the “Exhaustive” variant — which does not perform any prun-
ing — for expression sizes larger than ten (note the logarithmic
scale on the Y-axis in Figure 5).

To evaluate the algorithm SolveConcolic, we used the bench-
marks shown in Table 3. The algorithm computes expressions of up
to size 15 within a reasonable amount of time as shown in Table 3.
The algorithm exceeds our 30 minute time-out on only one bench-
mark, whose solution has an expression size greater than 20. The
right-most column in Table 3 shows that the algorithm reaches the
desired solution within a few iterations of the CEGIS outer loop.

5. The TRANSIT Synthesis Tool
We now describe the implementation of TRANSIT, which uses the
algorithms described in Section 4 to generate an implementation of
the protocol from concolic snippets. To this end, TRANSIT needs to:
(1) compute process-variable update expressions, and (2) compute
guards for transitions.

5.1 Computing Update Expressions
TRANSIT employs a parallel assignment model, allowing the up-
date for each primed variable to be computed independently. For
each primed variable v′, the TRANSIT snippets specify a set of con-

0 5 10 15

1
10

100
1K

10K
100K

1M
10M

#
 E

x
p

re
ss

io
n

s Pruned

Exhaustive

Expression Size

Figure 5. Average number of expressions explored for various ex-
pression sizes by the Pruned and Exhaustive variants of Algorithm
SolveConcrete. We omit data for the Exhaustive variant for sizes
greater than 10 where it exceeds the memory limit of 3.5 GB.

colic examples, each of the form Pre⇒ Post. This is precisely the
form in which the Algorithm SolveConcolic expects a concolic ex-
ample and can thus be solved directly by the algorithm. We instan-
tiate o in Algorithm SolveConcolic with v′, V with the set of all
process variables and incoming message fields i.e., all the variables
which can be read in the current scope and ConcolicExs with the
set of concolic examples provided in the TRANSIT snippets.

5.2 Computing Guard Expressions
A guard can be viewed as a Boolean-valued expression. The key
difference between computing guards and computing update ex-
pressions is that for a given control state and input event, guards
cannot be computed independently of each other. To ensure that
the behavior of the EFSM implementations generated by TRANSIT
are deterministic, the computed guards for each control state and
input event pair are required to be pairwise mutually exclusive. To
compute guards on transitions from a given state, TRANSIT groups
the concolic snippets with the same starting state, input event and
next state into one guard-action as shown in Figure 4. Therefore,
given a starting state and input event, each possible next state has a
corresponding guard-action associated with it.

Given a set of guard-actions B1, . . . , Bn, the jth guard-action
block is a set of examples conditioned by Prej1, . . ., Prejkj . The
algorithm for computing guards sequentially computes the guards
for each of the blocks, starting with B1. Thus, before synthesizing
the jth guard, it has the guards ϕ1, . . . , ϕj−1 corresponding to the
guard-action blocks B1, . . . , Bj−1 available to it. To compute a
guard ϕj for the guard-action block Bj , we observe that ϕj must
evaluate to false whenever the guard ϕi evaluates to true, for any
i < j. This property is expressed with the concolic examples:

ConcolicExs1 = {ϕi ⇒ ¬ϕj | i < j}
Next, ϕj must evaluate to true whenever any of the preconditions
Prejl, l ∈ [1, kj] evaluate to true. This property can be expressed
with the following concolic example:

ConcolicExs2 =


 kj∨

l=1

Prejl

⇒ ϕj


Also, corresponding to each block Bi for which a guard has

not yet been synthesized (i.e., i > j), ϕj must evaluate to false
whenever any of preconditions in Bi evaluate to true. This property
is expressed with the following symbolic examples

ConcolicExs3 =

{(
ki∨
l=1

Preil

)
=⇒ ¬ϕj

∣∣∣∣∣ i > j

}
Finally the concolic example set required for inferring ϕj is the

union of ConcolicExs1, ConcolicExs2 and ConcolicExs3. Again, V
is instantiated to be the set of all process variables and the incoming

7

Description Expected Expression Exp. Size Constraints Time (s) # Iters

1 Max. of a, b ite(gt(a, b), a, b) 6 (a) (a > b)⇒ (o = a); (b > a)⇒ (o = b) < 1 1
(b) true⇒ (o ≥ a ∧ o ≥ b ∧ (o = a ∨ o = b)) < 1 2

2 Max. of a, b, c Similar to 1 15 Similar to 1(a) 536 7
Similar to 1(b) 762 16

3 Sym. Diff. of s1, s2
setunion(

7
true⇒ (o ⊆ (s1 ∪ s2);

< 1 2setminus(s1, s2), true⇒ (o ∩ (s1 ∩ s2)) = {};
setminus(s2, s1)) true⇒ (o ∪ (s1 ∪ s2)) = (s1 ∪ s2)

4 Sym. Diff. of 3 sets Similar to 3 11 Similar to 3 < 1 6
5 Sym. Diff. of 4 sets Similar to 3 15 Similar to 3 132 14

6 Conditional Update ite(equals(e, c1), a, b) 6 (e = c1)⇒ (o = a);
< 1 4

(e 6= c1)⇒ (o = b)

7 Largest of 2 sets 8

(a) (|s1| > |s2|)⇒ (o = s1); < 1 1
ite(gt(setsize(s1), (|s2| > |s2|)⇒ (o = s2)

setsize(s2)), s1, s2) (b) true⇒ (|o| ≥ |s1| ∧ |o| ≥ |s2| < 1 2∧ (o = s1 ∨ o = s2))

8 Largest of 3 sets Similar to 7 > 20 Similar to 7(b) TO –

Table 3. Description of the benchmarks used to evaluate the algorithms and experimental results

Synthesis
Prot- # Sce- Updates Guards State-
ocol narios Num. Exps Time Num. Exps Time Space

synth. tried (secs) synth. tried (secs)
VI 19 49 449 < 1 17 525 < 1 140K
MSI 77 157 3330 < 1 45 3710 < 1 854K

Table 4. Performance of snippet-based design

message fields. o is instantiated to be ϕj . Algorithm SolveConcolic
can now be used to infer the required guard expression ϕj .

6. Evaluating TRANSIT
To evaluate the proposed approach for specifying protocols with
concolic snippets, we describe our experiences in using TRANSIT
to specify some representative cache coherence protocols. As the
proposed aims to be easy to use, a direct scientific comparison
with existing approaches is challenging for two reasons: (1) a large
user study, besides logistical difficulty, presents the problem of
defining and extracting meaningful comparative metrics, and (2)
a programmer attempting the same problem with two different
approaches is subject to a familiarity bias. We instead document
the experiences of three different programmers — each a co-author
of this paper — in specifying three coherence protocols of varying
complexity (two textbook examples and one industrial strength
protocol) with TRANSIT. We summarize the perceived advantages
as well as limitations of our approach based on these experiences.
All experiments were performed using the expression vocabulary
shown in Table 1.

We first validated the feasibility of using our expression enu-
meration approach by transcribing fully specified protocols from
the GEMS simulation toolkit [18] into fully symbolic TRANSIT
snippets. With four cache processes and one directory, the entire
synthesis process took less than a second for each protocol. The
key results are summarized in Table 4.

6.1 Case Study A: Non-blocking MSI Protocol.
We specified the non-blocking “MSI protocol” described in the
synthesis lectures [25] using concolic snippets in TRANSIT. A non-
blocking directory allows a greater number of concurrent requests
to be in flight, requiring the programmer to consider a larger num-
ber of corner cases due to increased concurrency.

The scenarios described in the text resulted in a sparse initial set
of snippets, as most of the tricky corner cases were either indirectly
specified in the textual description or were left unspecified. Hence,
the programmer added 67 more snippets over 13 debugging itera-
tions before converging to a correct protocol. In each such iteration,
the programmer either added symbolic snippets, when the behavior
of the protocol in some corner case was completely unspecified, or
concrete snippets, when a specification existed but was incomplete.
Table 5 summarizes the effort and complexity in this experiment.

6.2 Case Study B: From MSI to MESI
The goal of our second case study was to augment the blocking
MSI protocol with an “E” state to arrive at the MESI protocol. The
E state (shorthand for exclusive) is an optimization that grants read-
write permissions to the first reader of an unshared address (i.e.,
not present in any cache) — as opposed to just read permission
in MSI — thereby eliminating coherence traffic on a subsequent
write to the same address. The synthesis lectures [25] describe this
protocol in terms of new scenarios and modifications to scenarios
in the MSI protocol. Our approach was to add the corresponding
snippets to the existing set of snippets used to specify the MSI
protocol. Because the examples describe a MESI protocol with
a non-blocking directory, we modified our baseline MSI protocol
correspondingly.

The extended protocol contained five new states (four for the
cache, one for the directory), and seven new message types. In
the first iteration, we added 19 snippets to specify transitions in-
volving the E state and the non-blocking behavior of the directory.
These snippets described the behavior of the protocol in under-
specified corner cases and scenarios involving transient states and
were added in response to the errors reported by the model checker.
The programmer was able to obtain a fully verified protocol by
adding twelve additional snippets over eight iterations. Additional
metrics gathered during this case study are presented in Table 5.

6.3 Case Study C: The SGI Origin Protocol
For our final case study, we chose the coherence protocol used in
the SGI-Origin 2000 servers [16], which is highly cited in the
cache coherence literature. The Origin protocol is a directory-
based, MESI protocol, and it supports multiple concurrent requests
to the same address. Processes communicate through messages that
may be arbitrarily re-ordered in the network. The consequent race
conditions made it an interesting candidate for this case study.

8

Laudon and Lenoski [16] describe the common case protocol
behavior using request flows. In this experiment, ignoring the “poi-
soned” directory state (used for page-migration), we transcribed
each of the read, read exclusive, upgrade, and write-back flows us-
ing symbolic snippets in TRANSIT. Except for obvious cases, we
left most of the guards empty and specified all conditional attributes
on message fields and process variables with pre-conditions.

The protocol skeleton comprised of the cache process and di-
rectory processes, four request types, twelve response types, the re-
quest and response networks, and an intervention network used to
buffer intervention requests. We initially specified 56 transitions in
the cache machine and 18 transitions in the directory machine. We
also specified the guards in instances where the incoming message
type was found to be inconsequential; doing so prevented the tool
from exploring artificially large expressions involving the disjunc-
tion of these enumerated types. The resulting protocol resulted in
an error discovered by the model checker due to the cache process
receiving an unexpected message. We fixed this case by adding a
concrete snippet describing the desired behavior of the cache. Once
again we left the guards unspecified, but the pre-conditions and up-
date constraints were predicated by identical values for the input
message fields and internal process variables, as seen in the violat-
ing trace.

Continuing similarly, we added concrete snippets to fix error
traces. In some cases, the tool identified inconsistencies between
the added trace and a pre-existing constraint. We found it straight-
forward to reconcile these differences before converging to a proto-
col that model checked. The final synthesis step took a little over 30
minutes, exploring over four million states during model checking.
The generated TRANSIT specification had a total of 50 transitions.

6.4 Discussion and Limitations
We found the primary convenience of using TRANSIT to be the
manner in which the initial specification phase and the iterative
debugging phases could be expressed differently. Although it was
natural to transcribe the bulk of the protocol symbolically from the
algorithmic description of flows, corner cases invariably resulted.
Most errors occurred due to unintended interactions between flows.
The unexpected message condition cited above resulted from a
cache process that was participating in a read-write-back race sce-
nario. TRANSIT generalized the concrete fixes provided by the pro-
grammer in a manner that was guaranteed not to contradict the con-
stituent flows. Fixing this bug symbolically would have required
reasoning about the impact on both these flows. Similarly, another
coherence violation was the result of the sharer set in the directory
being updated incorrectly when a previous owner was downgraded.
Again, the fix involved adding a snippet that concretely specified
the next contents of the sharer set with the pre-condition specifying
only the erroneous case.

Similar to other synthesis approaches, one limitation of TRAN-
SIT is the readability of the produced code. Although expression
size might sometimes approximate desirable metrics (like gate
count in hardware descriptions), it can result in less intuitive code.
For instance, consider the following code generated by TRANSIT
in one of our case studies:

SetSize(SetAdd(Sharers, InMsg.Sender)) - 1

Although this code is more is compact than the equivalent, but more
verbose:

if-then-else(SetContains(Sharers, (InMsg.Sender)),
SetSize(Sharers) - 1,
SetSize(Sharers))

the latter is more intuitive. Similarly, aggressive combining of
guard-action blocks sometimes resulted in guard expressions that

Case Study A Case Study B
Snippets in the first/last version 19/86 96/108
Writing first set of snippets 2 hrs 6 hrs
Total manual effort 6 hrs 13 hrs
Number of iterations 13 8
Number of traces inspected 5 6
Number of updates/guards inferred 175/80 260/74
States in verified protocol 1.48M 1.5M

Table 5. Effectiveness Metrics for Protocol Design

contained conjunctions of several different message types, making
the generated code more difficult to read (although not less efficient
than what a programmer would write).

7. Related Work
Broadly speaking, the topic of this paper can be classified as
program synthesis, an active area of research with numerous ap-
proaches. We limit the comparison of our work to those that we
feel are most closely related.

Methodologically, our approach is inspired by program sketch-
ing [23] and template-guided program synthesis [26]. In such ap-
proaches, a programmer specifies the scaffold of a program by list-
ing the high-level structure, the variables, the functional specifica-
tion as a pre and post condition, and the form of desired assign-
ments inside the specified structure. The desired expressions are
then formalized as terms with unknown parameters, whose values
are computed using constraint solving techniques analogous to the
ones used for automatic derivation of program invariants.

The problem of inferring an expression that matches a given set
of concrete examples is addressed by the work by Gulwani on a va-
riety of domains including end-user spreadsheet programming [7].
Although they do not use symbolic examples, their strategy for con-
crete examples, based on version space algebra, is different from
the approach we adopt: the algorithm computes a representation
of the set of all expressions that are consistent with each exam-
ple, achieves compactness of the representation by a judicious use
of data structures and pruning based on domain knowledge, and
constructs the product of all such representations to choose an ex-
pression that is consistent with all the examples.

The problem of inferring expressions consistent with con-
crete and symbolic snippets can be viewed as an instance of
the counterexample-guided inductive synthesis (CEGIS) strat-
egy [8, 13, 23]. As mentioned earlier, the problem is analo-
gous to solving an ∃∀ formula. The solutions described in prior
work [8, 13] explicitly encoded the problem into an SMT con-
straint, which was then solved using an SMT solver. The approach
described in this work uses an enumerative technique to handle the
existential quantifier and uses an SMT solver to check for univer-
sality.

Distributed protocols, such as cache coherence protocols, have
been the canonical application for model checking [3]. In reactive
synthesis, a finite-state controller is derived from correctness re-
quirements in temporal logic, but this problem becomes undecid-
able when synthesizing a distributed protocol (see [28] for a sur-
vey and [6, 21] for recent approaches aimed at coping with the
high computational complexity of the synthesis problem). An in-
teresting recent approach to distributed protocol design relies on
genetic programming [14]: given an initial protocol and correct-
ness requirements, if the model checker finds that the protocol does
not satisfy the requirements, the tool tries multiple mutations of
the guards and updates used in the protocol, ranks the resulting
versions by estimating how close they are to satisfying the require-
ments using state-space analysis, and iterates by probabilistically

9

selecting a variant with weights proportional to ranks. Note that
we require the programmer to specify the skeleton of the proto-
col (such as control states and state variables), and thus we focus
not on deriving protocol logic from high-level requirements, but on
providing assistance to complete the intended design correctly.

8. Conclusions
In this paper, we have proposed an approach for specifying dis-
tributed protocols by adopting verification tools that interact with
the programmer. The approach relies on the observation that parts
of the protocol behavior, as well as fixes during the debugging
phase, can be naturally expressed in terms of example snippets.
We described the concept of concolic snippets to allow a program-
mer to specify the protocol behavior as a mix of concrete examples
and symbolic partial transitions. For the computational problem of
inferring an expression that is consistent with the given set of con-
colic examples, we presented an algorithm that significantly prunes
the space of expressions that need to be considered, and also limits
the number of calls to an SMT solver needed to check consistency
with respect to symbolic constraints. To demonstrate the feasibility
of our methodology, we developed a prototype tool based on the al-
gorithm for expression inference that generates complete protocol
specifications from concolic snippets, which are then verified using
a model checker.

Our preliminary case studies using this tool allowed inexpe-
rienced programmers to correctly synthesize representative cache
coherence protocols of modest complexity with several hours of
human effort. We were also able to translate an incomplete flow-
based description of an industrial-strength protocol into a working
implementation by effectively exploiting the flexibility afforded by
concolic specifications. Encouraged by the initial experimental re-
sults, our next steps are to explore techniques to automatically ana-
lyze counterexamples returned by the model checker and alternate
strategies for expression inference, and synthesizing EFSM descrip-
tions from distributed scenarios such as message sequence charts.

References
[1] Intel Core2 Extreme Processor X6800 and Intel Core2 Duo Desk-

top Processor E6000 and E4000 Sequence — Specification Up-
date, 2003. URL http://www.intel.com/design/processor/
specupdt/313279.htm.

[2] D. Abts, D. J. Lilja, and S. Scott. So Many States, So Little Time:
Verifying Memory Coherence in the Cray X1. In Proceedings of the
International Parallel and Distributed Processing Symposium, IPDPS
’03, pages 1–11, 2003.

[3] E. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. .Long, K. McMillan,
and L. Ness. Verification of the Futurebus+ Cache Coherence Proto-
col. Formal Methods in System Design, 6:217–232, 1995.

[4] N. Dave, M. C. Ng, and Arvind. Automatic Synthesis of Cache-
Coherence Protocol Processors Using Bluespec. In Formal Methods
and Models for Codesign, MEMOCODE ’05, pages 25–34, 2005.

[5] D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol Verification as a
Hardware Design Aid. In Proceedings of the International Conference
on Computer Design, ICCD ’92, pages 522–525, 1992.

[6] B. Finkbeiner and S. Jacobs. Lazy Synthesis. In 13th International
Conference on Verification, Model Checking, and Abstract Interpreta-
tion, VMCAI ’12, LNCS 7148, pages 219–234, 2012.

[7] S. Gulwani. Automating String Processing in Spreadsheets using
Input-output Examples. In Proceedings of The 38th ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages,
POPL ’11, pages 317–330, 2011.

[8] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of Loop-
free Programs. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming Language Design and Implementation, PLDI ’11,
pages 62–73, 2011.

[9] D. Harel. Can Programming Be Liberated, Period? IEEE Computer,
41(1):28–37, Jan. 2008.

[10] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer-Verlag New York,
2003.

[11] D. Harel, A. Marron, and G. Weiss. Behavioral Programming. Com-
munications of the ACM, 55(7):90–100, Jul. 2012.

[12] G. J. Holzmann. The Spin Model Checker: Primer and Reference
Manual. Addison-Wesley, 2003.

[13] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided
Component-based Program Synthesis. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Vol-
ume 1, ICSE ’10, pages 215–224, 2010.

[14] G. Katz and D. Peled. MCGP: A Software Synthesis Tool Based
on Model Checking and Genetic Programming. In 8th Internation
Symposium on Automated Technology for Verification and Analysis,
ATVA ’10, LNCS 6252, pages 359–364, 2010.

[15] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Software Synthesis
Procedures. Communications of the ACM, 55(2):103–111, Feb. 2012.

[16] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, ISCA ’97, pages 241–251,
1997.

[17] N. A. Lynch. Distributed algorithms. Morgan Kaufmann Publishers
Inc., 1996.

[18] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Mul-
tifacet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset. SIGARCH Computer Architecture News, 33(4):92–99, Nov.
2005.

[19] L. D. Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
Proceedings of the 14th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, TACAS ’08,
pages 337–340, 2008.

[20] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit Testing
Engine for C. In Proceedings of the 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’05, pages
263–272, 2005.

[21] S. A. Seshia. Sciduction: Combining Induction, Deduction, and Struc-
ture for Verification and Synthesis. In Proceedings of the 49th Annual
Design Automation Conference, DAC ’12, pages 356–365, 2012.

[22] R. Singh and A. Solar-Lezama. Synthesizing Data Structure Manipu-
lations from Storyboards. In Proceedings of the 19th ACM Symposium
on Foundations of Software Engineering, FSE ’11, pages 289–299,
2011.

[23] A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu. Program-
ming by Sketching for Bitstreaming Programs. In Proceedings of the
SIGPLAN 2005 Conference on Programming Language Design and
Implementation, PLDI ’05, pages 281–294, 2005.

[24] A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching Concurrent
Data Structures. In Proceedings of the SIGPLAN 2008 Conference on
Programming Language Design and Implementation, PLDI ’08, pages
136–148, 2008.

[25] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory
Consistency and Cache Coherence. Morgan Claypool, 2011.

[26] S. Srivastava, S. Gulwani, and J. S. Foster. From Program Verification
to Program Synthesis. In Proceedings of the 37th annual ACM Sym-
posium on Principles of Programming Languages, POPL ’10, pages
313–326, 2010.

[27] M. Talupur and M. R. Tuttle. Going with the Flow: Parameterized
Verification using Flows: An Industrial Experience. In Proceedings
of the 2008 Internation Conference on Formal Methods in Computer-
Aided Design, FMCAD ’08, pages 1–8, 2008.

[28] W. Thomas. Facets of Synthesis: Revisiting Church’s Problem. In
Foundations of Software Science and Computational Structures, 12th
International Conference, FOSSACS ’09, LNCS 5504, pages 1–14,
2009.

10

http://www.intel.com/design/processor/specupdt/313279.htm
http://www.intel.com/design/processor/specupdt/313279.htm

	Introduction
	Illustrative Examples of Our Approach
	Protocol Specification using Concolic Snippets
	High-level Building Blocks of Transit
	Programming with Transit

	Inferring Expressions
	Problem Definition
	Inferring Expressions from Concrete Examples
	Inferring Expressions from Concolic Examples
	Evaluation of the Expression Inference Algorithm

	The Transit Synthesis Tool
	Computing Update Expressions
	Computing Guard Expressions

	Evaluating Transit
	Case Study A: Non-blocking MSI Protocol.
	Case Study B: From MSI to MESI
	Case Study C: The SGI Origin Protocol
	Discussion and Limitations

	Related Work
	Conclusions

